Abstract

The stress-strain curve of a polycrystalline duralumine (D1) is studied to find three basic deformation stages: linear hardening, parabolic hardening (n = 1/2), and prefracture (n < 1/2). The results obtained show special features of macrolocalization of the plastic flow of the alloy under review. The distribution patterns of localized plastic flow domains develop according to deformation stages. The prefracture stage is characterized by self-correlated motion of the domains to the point of subsequent fracture. It follows from an analysis of the plastic flow localization kinetics that both hardening and softening domains coexist in the specimen in the prefracture stage. The domains move with a constant velocity inherent to each of them and linearly dependent on the position of their nucleation point.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call