Abstract

AbstractThe influence of the molar ratio caprylic acid/triolein, enzyme concentration and water content on the kinetics of the interesterification reaction of triolein (TO) and caprylic acid (CA) were studied. The enzyme used was the 1,3‐specific Rhizomucor miehei lipase. Data modelling was based on a simple scheme in which the acid was only incorporated in positions 1 and 3 of the glyceride backbone. In addition, it was assumed that positions 1 and 3 of the triglycerides were equivalent and that the events at position 1 did not depend on the nature of the fatty acid in position 3 and vice versa. Monoglycerides and diglycerides were not detected during the experiments. This was attributed to the low water content of the immobilised enzyme particles. The value of the equilibrium constant, K, for the exchange of caprylic and oleic acids was 2.7, which indicated that the incorporation of caprylic acid into triglycerides was favoured compared with the incorporation of oleic acid. Simple first order kinetics could describe the interesterification reaction. Using this model and the calculated equilibrium constant, the apparent kinetic constants were calculated. The model fitted all the experimental data except for the CA/TO molar ratios larger than 6. Moreover, the interesterification reaction rate had a maximum value at CA/TO molar ratios of 4–6 mol mol−1.Copyright © 2003 Society of Chemical Industry

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.