Abstract

In this work we investigated the stability of a-Si:H films under illumination and following recovery in darkness at different temperatures. The a-Si:H films were fabricated with 55 kHz PECVD and with conventional rf 13.56 MHz PECVD. We measured the steady-state photocurrent and the dark-current after switching off the light source as a function of time. We observed photocurrent degradation and the following recovery of the dark current. The kinetics of the photocurrent degradation as well as the dark-current recovery demonstrated stretched-exponential behavior. The results of these straightforward measurements in combination with computer simulation were used to determine the effect of light-induced degradation and thermal recovery on the density of states distribution in the band gap of a-Si:H. We have found that the photocurrent degradation and the corresponding increase in the total defect concentration have different kinetics. The different kinetics were also determined for the dark-current recovery and the corresponding decrease in the total defect concentration. The results point out that slow and fast types of defects in a-Si:H films control the kinetics of light-induced changes of the defect distribution in the band gap. A model is proposed that relates the origin of the fast and slow metastable defects with the distribution of Si-Si bond lengths.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.