Abstract
AbstractStudies have been carried out on the thickness dependent transition between the amorphous and microcrystalline phases in intrinsic Si:H materials (i-layers) and its effect on p-i-n solar cell performance [1]. P(a-SiC:H)-i(a-Si:H)-n(μcSi:H) cell structures were deposited with the intrinsic Si:H layer thickness and the flow ratio of hydrogen to silane, R=[H2]/[SiH4], guided by an evolutionary phase diagram obtained from real-time spectroscopic ellipsometry. The thickness range over which the fill factors are controlled by the bulk was established and their characteristics investigated with different protocrystalline i-layer materials (i.e., materials prepared near the amorphous to microcrystalline boundary but on the amorphous side). Insights into the properties of these materials and the effects of the transition to the microcrystalline phase were obtained from the systematic changes in the initial fill factors, their light-induced changes, and their degraded steady states for cells with i-layers of different thickness and H2 dilution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.