Abstract

We studied the acid-catalyzed isomerization of levoglucosenone (LGO) to 5-hydroxymethylfurfural (HMF) and developed a reaction kinetics model that describes the experimental data across a range of conditions (100-150 °C, 50-100 mm H2 SO4 , 50-150 mm LGO). LGO and its hydrated derivative exist in equilibrium under these reaction conditions. Thermal and catalytic degradation of HMF are the major sources of carbon loss. Within the range of conditions studied, higher temperatures and shorter reaction times favor the production of HMF. The yields of HMF and levulinic acid decrease monotonically as tetrahydrofuran is added to the aqueous solvent system, indicating that water plays a role in the LGO isomerization reaction. Initial-rate analyses show that HMF is produced solely from LGO rather than from the hydrated derivative of LGO. The results of this study are consistent with a mechanism for LGO isomerization that proceeds through hydration of the anhydro bridge, followed by ring rearrangement analogous to the isomerization of glucose to fructose.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.