Abstract

The oxidation of kerosene (Jet-A1) and that of surrogate mixtures have been studied experimentally in a jet-stirred reactor at 1 to 40 atm and constant residence time, over the high temperature range 800–1300 K, and for variable equivalence ratio 0.5<φ<2). Concentration profiles of the reactants, stable intermediates, and final products have been obtained by probe sampling followed by on-line and off-line GC analyses. The oxidation of kerosene in these conditions was modeled using a detailed kinetic reaction mechanism (209 species and 1673 reactions, most of them reversible). In the modeling, kerosene was represented by four surrogate model fuels: 100% n-decane, n-decane-n-propylbenzene (74% / 26% mole), n-decane-n-propylcyclohexane (74% / 26% mole), and n-decane-n-propylbenzene-n-propylcyclohexane (74% / 15% / 11% mole). The 3-components model fuel was the most appropriate for simulating the JSR experiments. It was also successfully used to simulate the structure of a fuel-rich premixed kerosene-oxygen-nitrogen flame and ignition delays taken from the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.