Abstract

In this paper, the kinetics of isochronal differential scanning calorimetry of Fe48Cr15Mo14Y2C15B6 amorphous alloy was analyzed to understand the mechanism of crystallization. The crystallization process constituted of overlapping exothermic transformations occurring from 900 to 1100 K with activation energies from 369 to 437 kJmol−1. Analysis of the mechanism of crystallization under the theoretical framework of the Johnson-Mehl-Avrami-Kolmogorov model revealed that these transformations occurred by three-dimensional growth with either a decreasing nucleation rate or from nuclei that have already been formed. A comparison of the kinetic parameters of nucleation and growth of this alloy with that of Fe50Cr15Mo14C15B6 amorphous alloy showed the effect of yttrium on the increase of thermal stability and impediment of atomic diffusivity leading to decreased nucleation rate in the alloy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call