Abstract
The course of inactivation of yeast alcohol dehydrogenase (YADH) using 4,4′-dithiodipyridine (DSDP) has been studied in this paper. The results show that the reaction mechanism between DSDP and YADH is a competitive, complexing inhibition. The microscopic constants for the inactivation of the free enzyme and the enzyme-substrate complex were determined. The presence of the substrate NAD + offers strong protection for this enzyme against inactivation by DSDP. The above results suggest that two Cys residues are essential for activity and are situated at the active site. These essential Cys residues should be Cys-46 and Cys-174 which are ligands to the catalytic zinc ion. Another Cys residue, which can be modified by DSDP, is non-essential for activity of the enzyme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.