Abstract

To develop a multicompartment model of only essential human body components that predicts the contrast medium concentration vs time curve in a chosen compartment after an intravenous injection. Also to show that the model can be used to time adequately contrast-enhanced CT series. A system of linked time delay instead of ordinary differential equations described the model and was solved with a Matlab program (Matlab v. 6.5; The Mathworks, Inc., Natick, MA). All the injection and physiological parameters were modified to cope with normal or pathological situations. In vivo time-concentration curves from the literature were recalculated to validate the model. The recalculated contrast medium time-concentration curves and parameters are given. The results of the statistical analysis of the study findings are expressed as the median prediction error and the median absolute prediction error values for both the time delay and ordinary differential equation systems; these are situated well below the generally accepted maximum 20% limit. The presented program correctly predicts the time-concentration curve of an intravenous contrast medium injection and, consequently, allows an individually tailored approach of CT examinations with optimised use of the injected contrast medium volume, as long as time delay instead of ordinary differential equations are used. The presented program offers good preliminary knowledge of the time-contrast medium concentration curve after any intravenous injection, allowing adequate timing of a CT examination, required by the short scan time of present-day scanners. The injected volume of contrast medium can be tailored to the individual patient with no more contrast medium than is strictly needed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.