Abstract

The lack of specific inhibitors of the plasma membrane Ca2+ pump (PMCA) has made vanadate (VO-3), a non-specific inhibitor, an invaluable tool in the study of PMCA function. However, three important properties of vanadate as an inhibitor of the PMCA in intact cells, namely its speed of action in different experimental conditions, the reversibility of its inhibitory effects at different doses, and its dose-response, had never been characterized, despite extensive use. We report here the speed, reversibility and dose-response of PMCA inhibition by vanadate in intact human red cells. Near maximal inhibitory concentrations (1mM) in the red cell suspension blocked almost instantly the uphill Ca2+ extrusion by the PMCA, regardless of the intracellular Ca2+ concentration, cation composition of the external media, membrane potential or volume-stability of the cell. PMCA inhibition by vanadate, at concentrations of 10mM and 1mM, was not reversed by washing, resuspending, and incubating the cells for up to 2h in vanadate-free media. Vanadate inhibited PMCA-mediated Ca2+ efflux in intact red cells with a K1/2 of ∼3μM, a value similar to that described for the Ca2+-ATPase in isolated red cell membranes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call