Abstract

Five isomerization reactions involving intramolecular hydrogen-transfer in butoxyl radicals have been studied using variational transition state theory with small curvature tunneling. A set of best estimates of barrier heights and reaction energies for these five reactions was obtained by using coupled cluster theory including single and double excitations with a quasiperturbative treatment of connected triple excitations and a basis set extrapolated to the complete basis set limit plus core-valence correlation contributions and scalar relativistic corrections. This work predicts high-pressure limiting rate constants of these five reactions over the temperature range 200-2500 K and clarifies the available experimental data from indirect measurements. This study shows the importance of performing rate calculations with proper accounting for tunneling and torsional anharmonicity. We also proposed two new models for use in fitting rate constants over wide ranges of temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.