Abstract

The hydrodeoxygenation of fatty acids derived from vegetable and microalgal oils is a novel process for production of liquid hydrocarbon fuels well-suited with existing internal combustion engines. The hydrodeoxygenation of stearic acid was investigated in a high pressure batch reactor using n-dodecane as solvent over nickel metal catalysts supported on SiO2, γ-Al2O3, and HZSM-5 in the temperature range of 533–563K. Several supported nickel oxide catalysts with nickel loading up to 25wt.% were prepared by incipient wetness impregnation method and reduced using hydrogen. The catalysts were then characterized by BET, TPR, H2 pulse chemisorption, TPD, XRD, and ICP-AES. Characterization studies revealed that only dispersed nickel oxide was present up to 15wt.% nickel loading on γ-Al2O3. The acidity of the supports depends on nickel loading of oxidized catalysts and increases with increasing nickel loading up to 15wt.%. n-Pentadecane, n-hexadecane, n-heptadecane, n-octadecane, and l-octadecanol were identified as products of hydrodeoxygenation of stearic acid with n-heptadecane being primary product. The catalytic activity and selectivity to products for hydrodeoxygenation of stearic acid depends strongly on acidity of the supports. The maximum selectivity to n-heptadecane was observed with nickel supported γ-Al2O3 catalyst. A suitable reaction mechanism of hydrodeoxygenation of stearic acid was delineated based on products distribution. The conversion of stearic acid was increased with increasing reaction time, nickel loading on γ-Al2O3, temperature, and catalyst loading. Complete conversion of stearic acid was accomplished with more than 80% selectivity to n-heptadecane at reasonable reaction temperature of 563K after 240min of reaction using 15wt.% Ni/γ-Al2O3 catalyst. An empirical kinetic model was also developed to correlate the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.