Abstract

The adsorption kinetics of purified Aldrich humic acid (PAHA) onto hydrophilic (Fe2O3 and Al2O3) and hydrophobic (polystyrene and silanized SiO2) surfaces are studied by reflectometry. The initial rate of adsorption depends on the rate of transport and the rate of attachment. Attachment on hydrophilic surfaces is relatively fast at low pH where surface and HA attract each other electrostatically. Moreover, carboxylic and phenolic groups are exposed to the outside of the HA molecules, and these groups form complexes with surface hydroxyl groups. Due to the high attachment rate the process is transport-limited. At high pH, where surface and HA repel each other electrostatically, attachment is slow, and the adsorption rate is attachment-limited. At hydrophobic surfaces attachment of HA takes place through hydrophobic attraction. Hydrophobic groups are hidden in the inner part of HA molecules, and structural rearrangements are required before attachment can occur. The slow attachment leads to an attachment-li...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.