Abstract

The kinetics of batch and fed-batch cultures of recombinant Escherichia coli producing human-like collagen was investigated. In the batch culture, a kinetic model of a simple growth-association system was concluded without consideration of cell endogeneous metabolism. The cell lag time, the maximum specific growth rate and Y X/S were determined as 1.75h, 0.65h −1 and 0.51g·g −1, respectively. In the fed-batch culture, different specific growth rates were set at (0.15, 0.2, 0.25h −1) by the method of pseudo-exponential feeding, and the expressions for the specific rate of substrate consumption, the growth kinetics and the product formation kinetics of each phase were obtained. The result shows that the concentrations of cell and product can reach 77.5g·L −1 and 10.2g·L −1 respectively. The model predictions are in good agreement with the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.