Abstract

The electrode reaction Hg(II)/Hg in complex chloride solutions with dimethyl sulfoxide as solvent has been investigated at the equilibrium potential by the faradaic impedance method and a cyclic current-step method. The ionic strength was 1 M with ammonium perchlorate as supporting electrolyte, and the temperature was 25°C. Double-layer data have been determined by electrocapillary measurements. From the results of the kinetic measurements at ligand numbers ≤1.1 or ≥2.3 it is concluded that the overall charge transfer proceeds step-wise. The solvated Hg2+ and Hg22+ as well as the complexes HgClj2−j and the dinuclear Hg2Cl3+ contribute to the exchange current density. The rate constant of the step HgClj2−j/ Hg(I) is found to increase with the number of Cl− coordinated. This increase can be correlated to a decrease in solvation and a lengthening of the Hg−Cl distance. For 1.1 << 2.3, impedance measurements indicate a rate-controlling adsorption step. It is suggested that the uncharged HgCl2 then forms an adsorbed network on the mercury surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.