Abstract

The kinetics of heterogeneous methanolysis of sunflower oil was studied at 60?C using mechanochemically synthesized CaO?ZnO as catalyst. Influence of agitation speed, catalyst amount and methanol to oil molar ratio on the rate of reaction was analyzed. The rate of the process depends on the two resistances - mass transfer of triglycerides to the catalyst surface and chemical reaction on the catalyst surface, which are defined as the values of the overall triglyceride volumetric mass transfer coefficient, kmt,TG, and the effective pseudo first-order reaction rate constant, k, respectively. These kinetic parameters actually determine the value of the apparent reaction rate constant, kapp, whose change with time is defined with the change of triglyceride (TG) conversion. The kinetic model was proposed and the model parameters determined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.