Abstract

The kinetics of heat-induced polymerization of gliadin, that is, a mixture of monomeric wheat storage proteins, was studied using a model system. Samples were heated at pH 6.0 and 8.0 at 110, 120, and 130 °C for up to 240 min, and their extractabilities were compared under nonreducing and reducing (with 1% dithiothreitol) conditions. Extraction media were sodium dodecyl sulfate (SDS) containing buffer (pH 6.8, SDS buffer) and/or 70% ethanol. Gliadin cross-linking mainly resulted from intermolecular disulfide (SS) bond formation. At higher temperatures and, preferably, alkaline pH, intramolecular SS bonds in gliadin underwent β-elimination reactions, leading to the formation of dehydroalanine (DHA) and free sulfhydryl (SH) groups. The latter interchanged rapidly with SS bonds, leading to intermolecular SS bonds and gliadin extractability loss. When free SH groups had been formed, gliadin extractability in SDS buffer decreased following first-order reaction kinetics, the reaction rate constant of which increased with temperature and pH. Furthermore, the extractabilities of α- and γ-gliadin in 70% ethanol decreased according to first-order reaction kinetics. ω-Gliadin extractability was much less affected. Under the experimental conditions, gliadin polymerization through SH-SS interchange occurred much more rapidly than β-elimination of cystine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.