Abstract

AbstractH2 adsorption on Au catalysts is weak and reversible, making it difficult to quantitatively study. We demonstrate H2 adsorption on Au/TiO2 catalysts results in electron transfer to the support, inducing shifts in the FTIR background. This broad background absorbance (BBA) signal is used to quantify H2 adsorption; adsorption equilibrium constants are comparable to volumetric adsorption measurements. H2 adsorption kinetics measured with the BBA show a lower Eapp value (23 kJ mol−1) for H2 adsorption than previously reported from proxy H/D exchange (33 kJ mol−1). We also identify a previously unreported H‐O‐H bending vibration associated with proton adsorption on electronically distinct Ti‐OH metal‐support interface sites, providing new insight into the nature and dynamics of H2 adsorption at the Au/TiO2 interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.