Abstract

Biomass is an important renewable and sustainable source of energy. Cellulose is the primary component of plant-derived biomass. Glucose, which can be further transformed to fuel alcohol in a fermentation process, is a biomass energy precursor. This study investigated the production of glucose from cellulose by hydrolysis in sub-critical water and the hydrolysis kinetics of cellulose. Kinetics was conducted in a temperature range of 240-260°C using a 200 ml stainless steel batch reactor. A simplified kinetic model base on parallel and consecutive reaction was proposed. The differential equations resulting from the model were fit to experimental data to obtain kinetic rate constants. The activation energy and the pre-exponential factor were determined. A good agreement between the simplified model and the experimental data was obtained. The experimental results show that the best hydrolysis technology is: reaction temperature 260°C, reaction time 120s. Under this condition, the glucose yield reaches 46.05%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call