Abstract

AbstractA scenario has been developed combining the glass transition (liquid to glass) with the crystal-to glass transition. If the “melting” point of a crystalline solid solution is reduced to the ideal glass transition temperature a triple point is predicted between crystal, liquid and glass. Based on extrapolations of measured specific heat data of undercooled liquid glass-forming Au- Pb-Sb alloys the excess entropy is found to vanish close to the glass transition. On the other hand, the amorphization reaction of crystalline Fe2Er-hydrides is characterized by a lambda-type anomaly in the specific heat. The logarithmic temperature-dependence of the specific heat results from local fluctuations in the crystalline phase, rather than thermally activated lattice defects. These results suggest that glass formation from the liquid as well as the crystalline state is characterized by an underlying instability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.