Abstract

The mechanism and kinetics of gas phase synthesis of ethyl-tert-butyl ether (ETBE) in the reaction between tert-butyl alcohol (TBA) and ethanol (EtOH) were investigated performing the reaction in a continuous flow quartz reactor at different temperatures and atmospheric pressure, using a heteropoliacid catalyst with 30wt% loading, dispersed on MCM-41. The Eley-Rideal reaction mechanism was previously proposed based on experimental observations that showed the rate of ETBE increased when partial pressure of tert-butyl alcohol increased, and the partial pressure of ethanol decreased, without significant effects on product selectivity. The kinetic model based on the Eley-Rideal mechanism was proposed and successfully employed to model accurately the experimental data at three different temperatures. The apparent activation energy and the frequency factor of the etherification reaction were 39.42 kJ/mol and 1.69 x 108 mol/kg . h . bar, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call