Abstract

Determining fertilization success of free spawning organisms in the field requires knowledge of how eggs and sperm interact under varying encounter frequencies and durations. In the laboratory, we investigated the relative influence of sperm concentration, egg concentration, sperm-egg contact time, and sperm age on fertilization in the sea urchin Strongylocentrotus franciscanus. Our results indicated that sperm concentration, sperm-egg contact time, sperm age, and individual variability were sequentially the most important factors influencing fertilization success. Egg concentration was not significant over the range tested. A theoretical model of fertilization (Vogel-Czihak-Chang-Wolf model) was used to estimate the two rate constants of fertilization kinetics: the rate constant of sperm-egg encounter and rate constant of fertilization. This model explained 91% of the variation in fertilization success, provided estimates of the rate constants involved in fertilization, and indicated the proportion (3%) of sperm-egg contacts that result in fertilization. Estimates of sperm swimming velocity and egg diameter were used to independently calculate the rate of sperm-egg encounter and confirm the predictions of the model. This model also predicts the non-significant effect of egg concentration on fertilization success found empirically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.