Abstract

Co3O4 with a coating architecture is one of the most promising transition metal oxides because of its wide application in electrochromic device, sensors, heterogeneous catalysts, electrocatalyst, supercapacitors and photocatalyst. In this study, an environment-friendly and cost-effective route for fabricating Co3O4 coating was successfully realized through the aqueous EPD (electrophoretic deposition) method with nitric acid as an additive. The EPD kinetics of Co3O4 with different solid loadings in aqueous dispersion was investigated in detail. It was found that more nitric acid needed for the surface charging of more Co3O4 nanoparticles would also significantly change the EPD condition, such as the electric current passing through the cell and the temperature of the suspension that would lead to a serious stability decrease in the EPD system. As a result, the increase in the deposition rate of the Co3O4 coating would be much lower than that in the solid loading. We also suggested that this conclusion may be noteworthy for aqueous EPD of some other nanoparticle kinds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.