Abstract

This research article reports original experimental and modeling detail of kinetics of the electron transfer reaction between Co(II) and chlorate ions in acetic acid solution. Design of experiment methodology has been employed to elucidate the effects of temperature and initial concentrations of reactants on the rate of reaction. Levenberg-Marquardt method has been used to fit processed kinetic data (temperatures, initial concentrations of reactants, and concentrations and rates of production of Co(III)) on to various possible rate equations. This algorithm provides a proficient mean for compensating the capricious effects of the experimental process variables and results in the maximum likelihood estimates of the kinetic parameters. The most significant rate law has been selected, on the basis of statistical analyses of the residuals between the predicted and experimental rates. The analyses suggest that the intrinsic rate of reaction is proportional to first power of chlorate concentration but for Co(II) the order is fractional (0.7455 ≈ and#190;). The effect of temperature on the observed rate constant (precision = 0.02 %) is excellently described by the Arrhenius and Eyring equations and the sluggish nature of the reaction is clearly manifested by the high energy (andgt; 93 kJ/mol), negative entropy (-28.5286 J/mol-K) and very small equilibrium constant of activation. Further fairly negative standard entropy of activation shows there is usually considerable rearrangement of energy among various degrees of freedom during the formation of activated complex and proposes an associative mechanism for formation of the activated complex. This research is performed to develop a kinetic model for the electron transfer reaction between Co(II) and chlorate ion. As a result, a redox couple of Co(II)/Co(III) has been formed which is used as a potent oxidation catalyst in chemical industries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.