Abstract

The kinetics of charging of the blocked (inert) electrode/solid electrolyte interface is studied for spherical or cylindrical electrodes by the impedance method in two modes (galvanodynamic and potentiodynamic). The case of slow diffusion and adsorption-desorption is analyzed for species of one type, namely, defects of the solid-electrolyte rigid sublattice (minor carriers). The roles that both the slow lattice defects and the fast conduction ions play in the electric double layer formation are taken into account. Calculations involve the use of both the diffusion model of a spherical or cylindrical electrode in electrolyte (proposed by Jacobsen and West) and the ac circuit of an ideally polarizable planar electrode in a solid electrolyte (developed by Grafov, Ukshe, and Bukun).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call