Abstract

ABSTRACTSmall temperature-induced perturbations from thermodynamic equilibrium of doped hydrogenated amorphous silicon (a-Si:H) are explored by dark conductivity measurements. The equilibration kinetics reveal significant differences between phosphorus and boron doping. Raising the temperature leads to an increase of electron/hole densities which are related to the activation of additional dopants, while a decrease of temperature causes the opposite effect of dopant passivation. The creation kinetics of P doped a-Si:H is stretched exponential with a temperature independent β value of 0.85 whereas dopant passivation in the same temperature range is also stretched exponential decay, but with values for β < 0.8. In contrast, the kinetics of boron activation and passivation are stretched exponential with equal β values. The time constant τ to achieve thermodynamic equilibrium for both activation and passivation is thermally activated with energies ≃ 1.1 eV for P and B doped a-Si:H. τ depends weakly on the degree of perturbation. A discussion and interpretation of the data based on hydrogen migration in a-Si:H is given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.