Abstract

Malic enzyme of pigeon liver binds NADPH at four equivalent enzyme sites and binds Mn2+ and malate each at two sets of "tight" and "weak" sites with negative cooperativity [Pry, T. A., & Hsu, R. Y. (1980) Biochemistry 19, 951-962]. Stopped-flow studies on the displacement of NADPH from the malate-enzyme complexes E4-NADPH4, E4-Mn2(2+)-NADPH4, E4-Mn2(2+)-NADPH4-dimalate, and E4-Mn2(2+)-NADPH4-tetramalate by large excess NADP+ or its analogue phosphoadenosine(2')diphospho(5')ribose show that NADPH dissociates from the binary complex rapidly with a first-order rate constant of 427 s-1. Dissociation from the ternary E4-Mn2(2+)-NADPH4 complex containing two tightly bound Mn2+ ions can be described by a single first-order process with a rate constant of 135 s-1, or more satisfactorily by two simultaneous first-order processes attributable to the reactions of Mn2+-deficient (k congruent to 427 s-1) and Mn2+-liganded (k = 96 s-1) subunits. The latter equals twice the maximum steady-state turnover rate of 53.2 + 3.0 s-1 assigned to dissociation of the reduced nucleotide from transient E-Mn2+-NADPH, and this 2:1 ratio strongly supports our proposed "half-of-the-sites" model [Hsu, R. Y., & Pry, T. A. (1980) Biochemistry 19, 962-968]. Dissociation from the E4-Mn2(2+)-NADPH4-dimalate complex (k = 100 s-1) follows only the slower process, suggesting that occupancy of malate at two sites tightens enzyme-bound NADPH on the adjacent sites. Binding of malate at two additional weak sites yields E4-Mn2(2+)-NADPH4-tetramalate and a NADPH dissociation rate constant of 2.69 s-1. The 97% decrease in NADPH dissociation parallels the observed 93% maximal inhibition by malate and is the cause of substrate inhibition.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call