Abstract

The morphology and growth kinetics of discontinuous precipitation (DP) in a Cu–20Ni–20Mn alloy were investigated in the temperature range of 523–673 K by optical microscopy, scanning electron microscopy, and transmission electron microscopy. A lamellar mixed structure consisting of alternating lamellae of a matrix and NiMn phase was observed in DP colonies. The volume fraction of regions formed by a DP reaction was determined by quantitative metallographic measurements. The kinetics of DP was evaluated on the basis of the Johnson–Mehl–Avrami–Kolmogorov equation, which resulted in a time exponent of approximately 1.5. We confirmed that the nucleation of the discontinuous precipitate was confined to grain edges or boundaries at an early stage of the reaction. The activation energy of DP process was determined to be approximately (72.7 ± 7.2) kJ/mol based on the Arrhenius equation; this result suggests that DP is controlled by grain boundary diffusion. The hardness values exhibited good correlation with the volume fraction of DP; this correlation was attributed to the presence of the ordered NiMn phase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call