Abstract

In the directed oxidation of Al-Mg alloys, MgO forms in the initial stage. The mechanism of formation of MgO from the Al-Mg alloy in the initial stage of oxidation was studied. The variables studied were the total pressure in the reaction chamber and partial pressure of oxygen. The oxidation rate in the initial stage was proportional to both the oxygen partial pressure and oxygen diffusivity. These results suggest that MgO forms by reaction-enhanced vaporization of Mg from the alloy followed by oxidation of the Mg vapour in the gas phase. The end of the initial stage corresponds to the arrival of the oxygen front close to the melt surface, when spinel formation occurs. The kinetics of formation of Al 2O 3 in the growth stage of directed oxidation of the Al-5wt.% Mg alloy was also investigated as a function of time, temperature and oxygen partial pressure. The growth rate decreased as a function of time, was practically independent of oxygen pressure and exhibited an activation energy of 361 kJ mol −1. In the growth stage, the kinetics of oxidation is controlled by the rate of transport of oxygen through the alloy layer near the surface to the alumina-alloy interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.