Abstract

The deposition kinetics of electrospark coatings on EP718-ID heatproof nickel alloy is investigated using three compositions of SHS electrodes of the Cr–Al–Si–B system. The optimal frequency–energy deposition mode (Е = 0,048 J, I = 120 A, f = 3200 Hz, and τ = = 20 μs), which is characterized by a minimal electrode erosion with the satisfactory coating deposition rate, is established. Complex investigations into the structure, phase composition, and properties of coatings are performed. It is shown that electrospark coatings formed by Cr–Al–Si–B electrodes noticeably increase hardness, heat resistance, and wear resistance of EP718-ID nickel alloy and can be recommended to protect the surface of important parts and units made of nickel alloys.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.