Abstract

The crystallization of sodium sulfate decahydrate (Na 2SO 4·10H 2O, mirabilite) from supersaturated solutions was investigated using stable supersaturated solutions seeded with mirabilite seed crystals. The experiments were done in batch, stirred reactors in which the supersaturated solutions were prepared either by dissolution of sodium sulfate anhydrous at 32 °C followed by cooling to 18 or 20 °C or by mixing equal volumes of equimolar ammonium sulfate and sodium hydroxide solutions at 20 °C. Inoculation of the solutions supersaturated only with respect to mirabilite with seed crystals was accompanied with temperature increase of the thermostated solution. Despite the fact that crystal growth was initiated with seed crystals, the process started past the lapse of induction times inversely proportional to the solution supersaturation. The rates of crystal growth were measured both from the temperature rise and from the concentration–time profiles, which were linearly correlated. The measured crystal growth rates showed a parabolic dependence on supersaturation at low supersaturations. For higher values this dependence changed to linear, a behavior consistent with the BCF spiral crystal growth model. The morphology of the crystals growing at 20 °C showed typical prismatic habit, while at 18 °C when crystallized from cooled sodium sulfate solutions changes in the crystal habit to a leaf like morphology were observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.