Abstract

A continuous flow-through reactor with a thin layer of solid particles (size ranging from 100 to 300 μm) was used to obtain a deeper knowledge on the mechanism of dissolution of UO2 under oxidizing conditions. Using this methodology the dissolution rate of uranium dioxide was determined at three different oxygen partial pressures (5, 21, and 100% in nitrogen) and as a function of pH (between 3 and 12) in a noncomplexing medium. From the results of these experiments the following rate equation was derived: In addition, XPS characterizations were performed to determine the U(IV)/U(VI) ratio on the solid surface at different experimental times and conditions. These results showed that at acidic conditions (pH below 6.7) the final solid surface presents a stoichiometry close to UO2, while at alkaline conditions the final solid surface average composition is close to UO2.25. This information was integrated with the results of the leaching experiments to present a model for the mechanism of dissolution of uranium dioxide under the experimental conditions. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 261–267, 1997.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call