Abstract

Molybdenite concentrates produced from porphyry copper deposits contain copper as an impurity in variable quantities. To produce a high-grade molybdenite concentrate, a chemical purification method is normally practiced. In this paper, a new alternative for the copper elimination from molybdenite concentrates containing chalcopyrite by sulfidation of the molybdenite concentrate and subsequent pressure leaching in sulfuric acid-oxygen media is discussed. The results indicated that copper contained in sulfidized molybdenite concentrates can be dissolved effectively by pressure leaching at low temperature ranging from 373 K to 423 K (100 °C to 150 °C) and low oxygen pressure (303.98 to 1013.25 kPa) with negligible dissolution of molybdenum. The final molybdenite contained less than 0.2 pct Cu which is appropriate for marketing. Temperature and oxygen partial pressure have both significant influence on the copper dissolution. The kinetics of the copper dissolution was analyzed using the shrinking core model with surface chemical control. The calculated activation energy was 51 kJ/mol in the range of 373 K to 423 K (100 °C to 150 °C). The copper dissolution rate is of zero order with respect to hydrogen ion concentration, and first order with respect to oxygen partial pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.