Abstract

A kinetic model for the conversion of dihydroxyacetone (DHA) to methylglyoxal (MGO) in honey is proposed; a building block approach was used to create the model. Artificial honeys doped with DHA and individual perturbants were fitted first, then multiple perturbants (alanine, proline and iron, and combinations of these) were fitted before comparing the simulation to real honey samples (doped clover and mānuka honey). The main responses in the prediction model were DHA, MGO, proline, primary amino acids, acidity, 3-phenyllactic acid and 4-methoxyphenyllactic acid. Three temperatures (20, 27 and 37°C) were studied and the conversion of DHA to MGO was monitored over at least 1year. Differences in the conversion between clover doped with DHA and mānuka honey were observed. The simulation fitted well for the honeys tested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.