Abstract

As with mammalian enzymes, green crab (Scylla serrata) alkaline phosphatase can be activated by Mg2+ through a time-dependent course. The activation is mainly a Vmax effect. Tsou's method was used to study the kinetic course of activation. The results show that the enzyme was activated by a complexing scheme that had not been previously identified: the enzyme first reversibly and quickly binds Mg2+ and then undergoes a slow reversible course to activation, with a relatively high activation energy (78 +/- 4 kJ/mol) and a slow conformational change. The activation reaction is a single molecule reaction, and the apparent activation rate constant is independent of Mg2+ concentration if the concentration is sufficiently high. The microscopic rate constants of activation and the association constant were determined from the measurements. The proposed scheme may also be applied to the Mg2+ activation mechanism for mammalian enzyme, to explain why the activation rate is time-dependent and not diffusion controlled. Substrate binding was also shown to affect the activation rate constant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.