Abstract

Two Pseudomonas species (designated strains B1 and X1) were isolated from an aerobic pilot-scale fluidized bed reactor treating groundwater containing benzene, toluene, and p-xylene (BTX). Strain B1 grew with benzene and toluene as the sole sources of carbon and energy, and it cometabolized p-xylene in the presence of toluene. Strain X1 grew on toluene and p-xylene, but not benzene. In single substrate experiments, the appearance of biomass lagged the consumption of growth substrates, suggesting that substrate uptake may not be growth-rate limiting for these substrates. Batch tests using paired substrates (BT, TX, or BX) revealed competitive inhibition and cometabolic degradation patterns. Competitive inhibition was modeled by adding a competitive inhibition term to the Monod expression. Cometabolic transformation of nongrowth substrate (p-xylene) by strain B1 was quantified by coupling xylene transformation to consumption of growth substrate (toluene) during growth and to loss of biomass during the decay phase. Coupling was achieved by defining two transformation capacity terms for the cometabolizing culture: one that relates consumption of growth substrate to the consumption of nongrowth substrate, and second that relates consumption of biomass to the consumption of nongrowth substrate. Cometabolism increased decay rates, and the observed yield for strain B1 decreased in the presence of p-xylene.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.