Abstract
The kinetics of co-crystal formation of caffeine (CF) with citric acid (CTA) was evaluated. Ball milling of CF and CTA in molar ratios of 4:1, 3:1, 2:1, 1:1, 1:2, 1:3, and 1:4 was performed by the liquid-assisted grinding (LAG) method. The samples were characterized by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC). Two types of co-crystals (co-crystal-1, a 1:1 CF-CTA co-crystal; and co-crystal-2, a new co-crystal form) were obtained. The kinetic characteristics of this new co-crystal formation were assessed by calculating the ball impact energy and force using the distinct element method (DEM) simulations. The results indicated that co-crystal-2 creation occurred under a condition in which the ball impact force exceeded a certain threshold value. Moreover, the total ball impact energy was positively correlated with co-crystal formation, exhibiting a higher ball impact force than the threshold value. The kinetics of co-crystal-2 formation was almost consistent with the Jander equation. Consequently, co-crystal-2 formation could be explained according to a three-dimensional diffusion mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.