Abstract
In the scope of this work, new carbon dioxide binding organic liquids (CO2BOLs) were developed and kinetic parameters in terms of pseudo first-order rate constants for homogenous reaction between CO2 and CO2BOLs in 1-hexanol were obtained by using stopped-flow method with conductivity detection. As an amidine DBN (1,5-diazabicyclo[4.3.0]non-5-ene) and as a guanidine TBD (1,5,7-triazabicyclo[4.4.0]dec-5-ene) and BTMG (2-tert-butyl-1,1,3,3-tetramethylguanidine) were investigated. Experiments were performed by varying organic base (amidine or guanidine) weight percentage in 1-hexanol medium for a temperature range of 288–308K. A modified termolecular reaction mechanism was used to analyse the experimental kinetic data. In addition, quantum chemical calculations by using B3LYP, MP2 and CCSD methods were performed to reveal the structural and energetic details of the single step termolecular reaction mechanism. Experimental and theoretical activation energies for these novel carbon dioxide capturing organic liquids were also unveiled.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: International Journal of Greenhouse Gas Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.