Abstract

The initial kinetics of Cr(III) oxidation on mineral surfaces is poorly understood, yet a significant portion of the oxidation process occurs during the first seconds of reaction. In this study, the initial rates of Cr(III) oxidation on hydrous manganese oxide (HMO) were measured at three different pH values (pH 2.5, 3, and 3.5), using a quick X-ray absorption fine structure spectroscopy (Q-XAFS) batch method. The calculated rate constants were 0.201, 0.242, and 0.322 s(-1) at pH 2.5, 3, and 3.5, respectively. These values were independent of both [Cr(III)] and [Mn(II)] and mixing speed, suggesting that the reaction was "chemically" controlled and not dependent upon diffusion at the time period the rate parameters were measured. A second-order overall rate was found at three pH values. This represents the first study to determine the chemical kinetics of Cr(III) oxidation on Mn-oxides. The results have important implications for the determination of rapid, environmentally important reactions that cannot be measured with traditional batch and flow techniques. An understanding of these reactions is critical to predicting the fate of contaminants in aquatic and terrestrial environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call