Abstract

In this work, the kinetics and mechanisms of the interaction of carbon monoxide and hydrogen with the surface of a nanosized SnO2-PdOx metal oxide material in air is studied. Non-stationary temperature regimes make it possible to better identify the individual characteristics of target gases and increase the selectivity of the analysis. Recently, chemometric methods (PCA, PLS, ANN, etc.) are often used to interpret multidimensional data obtained in non-stationary temperature regimes, but the analytical solution of kinetic equations can be no less effective. In this regard, we studied the kinetics of the interaction of carbon monoxide and hydrogen with atmospheric oxygen on the surface of SnO2-PdOx using semiconductor metal oxide sensors under conditions as close as possible to classical gas analysis. An analysis of the influence of catalytic surface temperature on the mechanisms of chemisorption processes allowed us to correctly interpret and mathematically describe the electrophysical characteristics of the sensor in the selective determination of carbon monoxide and hydrogen under nonstationary temperature conditions. The reaction mechanism is applied as well to the analysis of the operation scheme of the CO sensor TGS 2442 of Figaro Inc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.