Abstract

Potassium permanganate (KMnO4) preoxidation is capable of enhancing cyanobacteria cell removal. However, the impacts of KMnO4 on cell viability and potential toxin release have not been comprehensively characterized. In this study, the impacts of KMnO4 on Microcystis aeruginosa inactivation and on the release and degradation of intracellular microcystin-LR (MC-LR) and other featured organic matter were investigated. KMnO4 oxidation of M. aeruginosa exhibited some kinetic patterns that were different from standard chemical reactions. Results indicated that cell viability loss and MC-LR release both followed two-segment second-order kinetics with turning points of KMnO4 exposure (ct) at cty and ctr, respectively. KMnO4 primarily reacted with dissolved and cell-bound extracellular organic matter (mucilage) and resulted in a minor loss of cell viability and MC-LR release before the ct value reached cty. Thereafter, KMnO4 approached the inner layer of the cell wall and resulted in a rapid decrease of cell viability. Further increase of ct to ctr led to cell lysis and massive release of intracellular MC-LR. The MC-LR release rate was generally much slower than its degradation rate during permanganation. However, MC-LR continued to be released even after total depletion of KMnO4, which led to a great increase in MC-LR concentration in the treated water.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.