Abstract

To build a set of complete kinetic parameters of oxygenated fuels kinetic model on Pt catalyst, methanol was used as an example to carry out the catalytic oxidation kinetics experiment of oxygenated fuels on Pt/ZSM-5 catalyst. The Power law model and Langmuir–Hinshelwood (L–H) model were established to characterise the catalytic oxidation reaction of methanol. Then the oxidation kinetics of methanol, ethanol, dimethyl ether (DME) and n-butanol on Pt/ZSM-5 was studied under the same experimental conditions. It was found that the reaction orders of fuel molecules (methanol is −0.14) were much less than that of oxygen (1.23) in Power law model. The adsorption constants of fuel molecules were higher than that of oxygen in L–H model. The adsorption characteristics of alcohols on Pt were similar, but the reaction orders of alcohols were not consistent. The adsorption constants and adsorption heat of dimethyl ether were much larger than that of alcohols. The intrinsic reaction rates of four oxygenated fuels on Pt/ZSM-5 were compared at the same input power: r methanol r DME r ethanol r n-butanol. In general, methanol is a suitable oxygenated fuel in the design and development of catalytic micro-combustor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.