Abstract
AbstractCatalytic Meerwein-Ponndorf-Verley (MPV) reduction of various aliphatic, aromatic, and unsaturated aldehydes and ketones to corresponding alcohols (analyzed by GC-MS) in the presence of boron triethoxide (B(OEt)3) were studied. Kinetics of this reduction reaction was also studied and the respective rate constants were determined. It was found that B(OEt)3 catalyzes the reduction of aliphatic aldehydes and ketones to alcohols at room temperature while aromatic aldehydes and ketones were not reduced under the same conditions. In addition, MPV reduction using B(OEt)3 was found to be chemoselective as unsaturated aldehydes and ketones afforded the corresponding alcohols without affecting unsaturated groups. The mechanism proposed involves a six-membered transition state in which both the alcohol and the carbonyl are coordinated to the same boron centre of a boron alkoxide catalyst.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.