Abstract

Fine chemicals are commonly produced in batch or semibatch reactors, which are frequently operated on a rather limited basis with respect to the knowledge of the kinetics. A typical example is the hydrogenation of the flavor-substance β -ionone. The previously unknown kinetics were studied under industrially relevant conditions (180–230 ° C, 5–90 bar, Raney-Ni). The conversion of the triple-unsaturated β -ionone up to complete hydrogenation proceeds via a network of three parallel and four consecutive reactions. The kinetic parameters were determined, including the influence of external and particularly internal diffusion. Furthermore, the applicability of the presaturated one-liquid flow (POLF) reactor was studied. In this steady-state system, the liquid is externally presaturated with hydrogen, and then fed into a fixed-bed reactor. This leads to a simple – e.g. with respect to scale-up – two-phase system (liquid and solid catalyst) compared to common three-phase batch reactors (and also to “steady-state alternatives” like a trickle bed). For the given reaction, a liquid recycle is installed to compensate the low hydrogen-solubility. Results of experiments and modelling show the good applicability of the POLF-reactor with respect to temperature control, required reactor size, and the inherent advantages of a steady-state process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.