Abstract

Anaerobic digestion of calf skin collagenous waste was optimized for a batch process based on accelerated maximal methane yield per gram of input volatile solid. A kinetic analysis with respect to changes in the levels of volatile solid, collagen, amino sugars, amino acids, hydroxyproline, ammonium ions, and volatile fatty acid were followed for a period of 80 d. Distinct metabolic phases included an initial high rate collagenolysis for 4d, with 50% degradation and was followed by an acidogenic phase between 4-12 d with volatile fatty acids levels increasing to 215 mmol/L. Subsequently methanogenesis ensued and was maximal between 12-24 d when volatile fatty acids attained steady state levels. During the period of 80 d, the overall decrease in volatile solid level was 65%, whereas the collagen level declined by 85% with 0.45 L of methane yield/g of volatile solid degraded. Based on the levels of various metabolites detected, the concept of interactive metabolic control earlier proposed has been validated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call