Abstract

Explicit analytical expressions are obtained for the rate of nucleation over different paths in a binary system. It is shown that anisotropy in reaction rates and anisotropy in the free energy surface can cause nucleation to occur bypassing the saddle point. Homomolecular nucleation is demonstrated to be the natural limit of binary nucleation as the concentration of one component goes to zero. Explicit expressions are also obtained for the time lag of binary nucleation by using the singular perturbation approach. It is shown that the time lag associated with different paths of nucleation is essential in determining the relative importance of different nucleation pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.