Abstract

Eadie-Hofstee plots (v/[S] vs. v) of the kinetics of ATP hydrolysis by purified bovine heart mitochondrial F1-ATPase (MF1) over a substrate (MgATP) concentration range of 1-5000 microM were curvilinear, indicating negative cooperativity with respect to [MgATP] as originally shown by Ebel & Lardy (1975) [Ebel, R. E., & Lardy, H. A. (1975) J. Biol. Chem. 250, 191-196]. The data were computer analyzed for the best fit of the least number of straight lines, each representing a different apparent Km and Vmax. The best fits for MF1 and TF1 from the thermophilic bacterium PS3 were three lines in each case. The upper limits of the apparent Km values for MF1 were of the order of 10(-6), 10(-4), and 10(-3) M, and the corresponding apparent Vmax values (per minute per milligram of protein) were in the range of micromoles or less for the lowest Km line and decamicromoles for the other two. The results for TF1 were very similar. The presence of an activating anion (10 mM KHCO3) in the MF1 assay medium increased the overall Vmax by about 50% and eliminated the high Km but had essentially no effect on the intermediate and low Km's, indicating retention of negative cooperativity in the corresponding substrate concentration range. Kinetic data for MgITP as substrate also yielded two Km values (in the absence of KHCO3) differing by about 10(4)-fold. The relationship between [14C]dicyclohexylcarbodiimide [( 14C]-DCCD) binding to MF1 and activity inhibition was linear up to approximately 1 mol of DCCD bound/mol of MF1. At this point, the degree of inhibition was about 95%.(ABSTRACT TRUNCATED AT 250 WORDS)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.