Abstract
This study was carried out to investigate the biogas production obtained from anaerobic digestion of unripe plantain peels (PP) and the kinetics of the digestion process. 400 g of dried and shredded unripe plantain peels were mixed with 200 ml of water and put into 1 L digester and observed for biogas for hydraulic retention time (HRT) of 15 days by the method of downwards displacement. The cumulative biogas volume obtained after digestion was 285 ml. The COD removal efficiency of 72.5% was achieved. The kinetics of PP digestion was evaluated using first order, Monod, Contois and, Grau second-order models. Results showed that the kinetics of anaerobic digestion of PP followed the first-order model with a constant (K) of 0.095 day-1. Monod kinetics was evaluated and the maximum rate of substrate utilization (K), the half velocity constant (KS), endogenous decay coefficient (Kd), biomass growth yield (Y) and, maximum specific microorganism growth rate (µmax) obtained were 0.7615 day-1, 16.20 mg/l, 0.0047 day-1, 0.0112 mgVSS mgCOD-1 and, 0.009 day-1 respectively. These results revealed that inoculation would be required to increase the rate and volume of biogas production. Both first-order and Monod models gave a high coefficient of determination indicating that first order and Monod models can be used to model the digestion of PP. Contois model gave values of µmax and β as 0.011 day-1 and 0.644 mgCOD mgVSS-1 respectively. The result obtained has shown that the digestion of PP did not follow second-order kinetics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.