Abstract
The formation of three-particle charged exciton complexes (trions) in shallow GaAs/AlGaAs quantum wells in the temperature range 1.7–15 K has been investigated by luminescence spectroscopy and resonant light scattering. The effect of the photon energy and the intensity of additional above-barrier illumination on the trion formation kinetics has been analyzed. It is established that, upon intrawell excitation, illumination leads to the formation of trions when the light photon energy corresponds to the regions of effective formation of trions in the photoluminescence excitation spectra. It is shown that, with an increase in the illumination level, the trion concentration first increases and then reaches a plateau since the quantum well acquires an electric charge whose field equalizes the electron and hole capture rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Bulletin of the Russian Academy of Sciences: Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.