Abstract
In this work, the thermodynamic information on AlN formation in steel and experimental data on AlN precipitation kinetics are reviewed. A revised expression for the Gibbs energy of AlN is presented with special emphasis on microalloyed steel. Using the software package MatCalc, computer simulations of AlN precipitation are performed and compared with independent experimental results from the literature. A new model for grain boundary precipitation is employed, which takes into account fast short-circuit diffusion along grain boundaries as well as slower bulk diffusion inside the grain, together with the classical treatment for randomly distributed precipitates with spherical diffusion fields. It is demonstrated that the precipitation of AlN can be modelled in a consistent way if precipitation at grain boundaries and dislocations is taken into account, dependent on chemical composition, grain size and annealing temperature. It is also demonstrated that, for consistent simulations, the influence of volumetric misfit stress must be taken into account for homogeneous precipitation of AlN in the bulk and heterogeneous precipitation at dislocations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Modelling and Simulation in Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.